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33175 Gradignan, France

The fission barriers as well as different fission paths of the 70Se nucleus have been microscopically
investigated within a constrained Skyrme-Hartree-Fock plus BCS approach using the SkM* effective
interaction. The effects of intrinsic reflection asymmetric deformations have been taken into account
while axial symmetry around the fission direction has been assumed. The two-body part of the
center of mass correction has been included in a perturbative way and has been found to weakly
contribute to the calculated barrier heights. Upper limits of the latter have been evaluated as
the heights with respect to the ground state energy of the lowest saddle points obtained along
continuous paths in a reasonably dimensioned collective space connecting one-body shaped and
two-body shaped configurations. They have been found somewhat higher than what is expected
from other theoretical studies.

PACS numbers: 21.60.JzHartree-Fock and random-phase approximations,24.75.+iGeneral properties of fis-

sion

I. INTRODUCTION

In a previous work [1] extensive calculations of fission
barriers in heavy nuclei have been performed within
the Skyrme-Hartree-Fock mean field approximation in-
cluding pairing correlations in the BCS approximation.
Since this approach has been proven to satisfactorily
describe the considered fission barrier heights, we have
found it interesting to extend such a study to the com-
pletely different region of light nuclei, specifically here
the 70Se isotope. As well known (see, e.g., [2]), when
the fissility parameter x decreases, the saddle point
shape becomes more and more necked in, or in other
words the scission point becomes closer to the saddle
point. Below the so-called Businaro–Gallone x-value,
one even finds that only conditional liquid drop fis-
sion barriers exist for given fragmentations. The 70Se
nucleus having a fissility parameter x = 0.33 (with
(Z2/A)crit = 50.13 [3]) does qualify a priori for such an
instability at the saddle point with respect to reflexion
asymmetric deformations. Moreover it has been argued
from semi-classical calculations (see [4]) that the large
value of the curvature coefficient associated in such a
model approach with Skyrme effective forces should
yield fission barriers in light nuclei much too high. As-
sessing the value of our approach in such a nuclear re-
gion is thus the main motivation for the present study.
Our choice of a particular light nucleus has been natu-
rally oriented towards the 70Se isotope since recent ex-
perimental data [5] are available and some calculations
have been already performed for that nucleus [6, 7].

II. THEORETICAL FRAMEWORK AND

CALCULATION PROCEDURE

As in Ref. [1] the Skyrme effective force, in its SkM*
parametrization [8], has been used. As well known,
it has rather good surface properties which makes it
well suited for the description of very elongated nuclear
shapes as encountered during the fission process.

The usual BCS formalism with a seniority force has
been implemented to treat the pairing correlations.
The constant matrix elements of the seniority force are
given for the q-charge state by Gq = gq/(11 + Nq) in
MeV where Nq is the number of particles of charge q,
gn = 17.1 MeV and gp = 16.5 MeV. This parametriza-
tion has been taken from the calculations of Ref. [9]
dealing with the spectroscopic properties of nuclei in
the same region. The single particle states entering the
BCS equations are contained in the range ]−∞, λ + 5]
in MeV (where λ is the chemical potential) and their
contribution is weighted at the edges by a Fermi factor
whose diffuseness parameter has the value of 0.2 MeV.
In all the calculations presented here we have allowed
for left-right asymmetrical deformations, measured by
the expectation value of the axial octupole moment
〈Q̂30〉 given, in spherical coordinates by:

〈Q̂30〉 =

∫

dr ρ(r) r3 Y 0
3 (θ, φ) , (1)

(in what follows ρ(r) represents the mass, i.e., neutron
plus proton, distribution). When the left-right symme-
try is broken, we have further assumed the axial sym-
metry along the z-axis. When the left-right symmetry
is imposed or borne out by the potential energy sur-
face, in some instances we have relaxed the former axial
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symmetry. Both axial and non-axial quadrupole defor-
mations are defined by the expectation values 〈Q̂20〉
and 〈Q̂22〉 through:

〈Q̂20〉 =

∫

dr ρ(r) (3z2 − r
2) (2)

〈Q̂22〉 =

∫

dr ρ(r) (x2 − y2) , (3)

and for small deformations, they can be expressed in
terms of the Bohr parameters β and γ [10] at first order
in β as follows:

〈Q̂20〉 =

√

5

π
A 〈r2〉β cos γ (4)

〈Q̂22〉 =

√

5

3π
A 〈r2〉β sin γ (5)

where 〈r2〉 is the averaged expectation value of the
squared radius:

〈r2〉 =
1

A

∫

dr ρ(r)r2 . (6)

The inverse relations are therefore (at first order in β):

β =

√

π

5

√

〈Q̂20〉2 + 3 〈Q̂22〉2
A 〈r2〉 (7)

tan γ =

√
3 〈Q̂22〉
〈Q̂20〉

(8)

Since our code gives rise to calculations with a basis
rather close to axial symmetry having Oz as a symme-
try axis, the relevant ranges for γ are on the prolate
and oblate sides, respectively:

0
�

γ
� π

6
(case 1) (9)

π
�

γ
� 7π

6
(case 2) (10)

β being always positive. Correspondingly, the axial
and non-axial quadrupole moments 〈Q̂20〉 and 〈Q̂22〉
are both, respectively, positive and negative in the two
above cases. Nevertheless the γ′-values traditionally
displayed on figures (see, e.g., our Fig. 2 where we
have kept the notation γ) are defined by:

γ′ = γ (case 1) (11)

γ′ = −γ +
4π

3
(case 2) (12)

such that they range between 0 and π/3. Moreover one
can note that, in our code, x and y are interchangeable
by construction so that the sign of 〈Q̂22〉 when con-
straining this moment is irrelevant.

In order to calculate the fission barrier height, we
have first to determine the most relevant fission paths

from the ground state to scission configurations and
beyond, with a particular attention paid to the saddle
points. In that respect we have to find paths along
which all the moments of the nuclear density remain
continuous functions of the elongation parameter cho-
sen here to be represented by the mass quadrupole mo-
ment 〈Q̂20〉. The barrier height is thus the energy of
the lowest saddle point relatively to the ground state.

To better understand the transition between the one-
body shaped solutions around the “exit point” (defined
in section III B) and those in the fission fragment val-
leys, one has to evaluate the thickness of the “neck”
of matter appearing between nascent fragments. One
possible way to do so is to compute the hexadecapole
moment in spherical coordinates by:

〈Q̂40〉 =

∫

dr ρ(r) r4 Y 0
4 (θ, φ) . (13)

One can alternatively make use of another global vari-
able previously introduced by Warda et al. [11]:

〈Q̂N 〉 =

∫

dr ρ(r) e−(z−zmin)2/a2

. (14)

The width of the gaussian a is chosen to be of the or-
der of the nucleon–nucleon interaction range (a = 1
fm here) and its center zmin is defined as the point on
the fission axis where the nuclear density reaches its
lowest value between both (nascent) fragments. For a

two-body shaped system, 〈Q̂N 〉 is vanishing when the
tip-distance between the soft edges is much larger than
the a parameter. On the contrary, a one-body shaped
nucleus has a finite expectation value 〈Q̂N 〉 which de-
pends on the compact character of the nucleus, mainly
determined by its elongation (〈Q̂20〉-value).

To thoroughly explore the multi-dimensional poten-
tial energy surface under scrutiny, it is of practical in-
terest to perform cuts according to various supplemen-
tal conditions like constraining one (or more) collec-
tive variable to have given a value. To achieve that,
in practice, one has to make sure that solving the con-
strained variational problem one guarantees with a suf-
ficient accuracy that the requested condition(s) is (are)
met. Following techniques originated in this context by
the Bruyères-le-Châtel group [12], we have developed,
only in the axially symmetric case, an algorithm which
adjusts iteratively the Lagrange multipliers λi to pro-
vide the requested expectation values of the constraint
operators Q̂i. This has been done in close collabora-
tion with D. Samsœn (CENBG Bordeaux). The idea
consists in calculating the relevant δλi values from the
differences δ〈Q̂j〉 between the computed and expected
values at the first order of perturbation theory. This
implies the inversion of a matrix similar to the inertia
matrix in the Inglis cranking approximation.

In our codes, the single-particle HF wave functions
have been expanded onto the axially deformed har-
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monic oscillator basis which has obviously to be trun-
cated in practice. This introduces, as well-known,
spurious dependence upon the basis parameters that
has been carefully checked as outlined in Ref. [1].
Namely we have optimized the basis parameters all
along the curve from the ground state to the exit point
at 〈Q̂20〉 ≈ 44 barns (b) and along the two fusion val-
leys displayed in Fig. 3 (see next section for explana-
tions). All the results reported in this paper have been
obtained with the basis size parameter N0 = 12 (with
the notation of Ref. [1]).

Our calculations deal, as well known, with solutions
in the intrinsic frame. Two types of approximate cor-
rections are considered here to tentatively cure for the
symmetry breaking inherent to this situation. They
concern the rotational and translational invariances.
Some consequences of these approximations (presented
at length in various other places, see, e.g., [1]) will be
discussed below, particularly in Section IV.

III. RESULTS: FISSION PATHS AND

BARRIER HEIGHTS

We first report on the results concerning the poten-
tial energy surface. They aim at finding out the low-
est relevant paths from the ground state to some final
states in which fragments are well separated.

A. Around the ground state deformation

To find the lowest minimum, i.e., the ground state,
we have initiated the constrained Hartree-Fock iter-
ative process with a spherical Woods-Saxon single-
particle potential and a constraint on the elongation
〈Q̂20〉 released after a few iterations. This initial con-
straint acts as a perturbation taking the nucleus away
from the spherical shape and, once released, enables to
find local minima in the vicinity of the spherical point
(this point being itself possibly included). Restrict-
ing ourselves first to axially symmetrical shapes, we
have obtained two almost degenerate minima, namely
one oblate at 〈Q̂20〉 ≈ −2.2 b and one prolate at

〈Q̂20〉 ≈ 1.5 b. The latter is found to be about 150 keV
higher than the oblate one while the spherical barrier,
from the prolate minimum to the spherical point, is
even smaller (see Fig. 1). Using the expressions (4)
and (5) the corresponding β-values are, respectively,
β ≈ 0.15 (oblate) and β ≈ 0.10 (prolate). A posteri-
ori we see that these values are reasonably small as to
allow to truncate the expansion of 〈Q̂20〉 and 〈Q̂22〉 at
first order in β.

Actually the imposition of axial symmetry leads in
that case to rather deceptive conclusions. As shown
in Fig. 2 where various cuts of the potential energy
surface in the (β, γ) usual sextant are shown, this nu-

〈Q20〉(b)
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FIG. 1: Deformation energy curve of 70Se around the spher-
ical point.
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FIG. 2: Cuts in the (β, γ) plane (note the very dilated scale
of the energy).

cleus is essentially a spherical oscillator, on which a
rather shallow gutter running from β ≈ 0.10 on the
prolate side to β ≈ 0.15 on the oblate side is to be
noted. It is worth noting that this feature is at vari-
ance with those underlying some other theoretical ap-
proaches (see Refs. [13–15]) emphasizing an alleged
prolate-oblate coexistence for this nucleus. The exper-
imental spectrum (see, e.g., the Fig. 3 of Ref. [15])
does not allow to confirm either theoretical finding.
One finds a rather nice vibrational pattern for the se-
quence of first 0+, 2+, 4+ states (energy and B(E2)
ratios close to 2). However quasi β and quasi γ band
structure might be present as well. Nevertheless, it is
quite clear that the consideration of any structure of
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the mass parameters in conjunction with our rather
flat energy surface might stabilize the collective solu-
tion in a smaller deformation range. This would be
more consistent with the data. In this context, it is
interesting to note that, as it will be discussed later,
including the two-body part of the center of mass cor-
rection produces also a perturbation of our potential
energy surface yielding a statically preferred prolate
equilibrium shape.

B. “Ground state” ascending valley

At first, we discuss what we call the “ground state”
ascending valley (i.e., ascending upon increasing the

Q̂20 operator expectation value). To describe this val-
ley, we have started from the prolate equilibrium (for
purely axial shapes) solution generating step by step
self-consistent solutions whose mass quadrupole mo-
ments differ by about 5 b on average. In doing this,
we allowed for a possible left-right reflection (mirror)
asymmetry but not for a violation of the axial sym-
metry. As seen in Fig. 3, we have obtained a poten-
tial energy curve monotonically increasing by about 50
MeV when going from 〈Q̂20〉 = 1.5 b to 〈Q̂20〉 ≈ 44 b.
A necessary condition for considering the ensemble of

〈Q20〉 (b)
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FIG. 3: Deformation energy curves of 70Se obtained in the
conditions described in the text. The full line is the ground
state ascending valley (one-body shapes) whereas the dis-
continuous lines denote two-body shapes: the dashed line
corresponds to the 39K+31P fragmentation, whereas the
dotted one corresponds to the 58Ni+12C fragmentation.

such solutions as forming a valley is that a collection
of expectation values of relevant collective operators
appears to be smoothly varying as function of the con-
strained quantity – here 〈Q̂20〉. Of course, this is not
a sufficient condition since one can not guarantee that
the expectation value of some operator not looked at in
the present calculations would not exhibit wild excur-
sions out of a smooth path. This remark is valid for all
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FIG. 4: Variation of the axial octupole, hexadecapole and
“neck” moments as functions of the elongation 〈Q̂20〉 along
the ground state ascending valley (see text for definition).

calculations of this type (along some cut in the collec-
tive space like here or building up a mesh in a potential
energy surface necessarily restricted to a limited num-
ber of collective variables as, e.g., in [16]). At least, one
should make sure that the supposedly most important
modes are reasonably well described by the retained
operators. In our case, we have chosen three such oper-
ators, one related to the mass asymmetry, namely Q̂30,
and the two others related to the neck-formation modes
Q̂40 and Q̂N . Obviously the choice of these operators
is not without problems, beyond the mere considera-
tion of the limited number of studied modes. Indeed,
they neither are independent collective variables nor
unambiguously define a physical configuration. By the
latter, we do not mean that they are not univocally
defined in a mathematical sense (see the above discus-
sion), but rather that they cannot define in a pertinent
way the whole span of shapes going from one single
spherical (or quasi spherical for that matter) nucleus to
two separated deformed fragments. The hexadecapole
moment is of poor usefulness in the latter case while
〈Q̂N 〉 is hardly meaningful in the former case. This is
precisely why we have decided to consider systemati-
cally both. The expectation values of Q̂30, Q̂40 and Q̂N

along the ground state ascending valley are displayed in
Fig. 4. They all show, up to small kinks (consistently

in the 〈Q̂40〉 and 〈Q̂N 〉 curves) near 〈Q̂20〉 = 12 b,
rather smooth behaviors. The corresponding sequence
of shapes is displayed in Fig. 5. It is worth noting that
we have found around 〈Q̂20〉 = 21 b some octupole
instability, as illustrated in Fig. 6. Upon increasing
the deformation from 〈Q̂20〉 = 15 b for instance, one
experiences the apparition of a shallow valley in the
direction of increasing 〈Q̂30〉 values near 〈Q̂20〉 = 21 b.
This pattern transforms itself in a shouldering of lesser
and lesser importance at higher and higher 〈Q̂20〉 val-

ues, to almost disappear near 〈Q̂20〉 ≈ 30 b. It is
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FIG. 5: Nuclear density contours at different 〈Q̂20〉-values
along the ground state ascending valley.

important to note that we have found no evidence of
a smooth connection between this octupole instability
region and the second descending valley which will be
discussed below and whose energy curve as a function
of 〈Q̂20〉 crosses the energy curve of the presently stud-
ied ascending ground state valley at almost the same
quadrupole deformation – namely 〈Q̂20〉 = 26.5 b.

At 〈Q̂20〉 ≈ 44 b, which corresponds to the so-called
“exit point”, the ground state ascending valley termi-
nates, as will be discussed in the next subsection. This
means, in practice, that at such quadrupole moment
values and at larger ones, we did not find any stable
symmetrical equilibrium solutions whose collective mo-
ment values would be smoothly connected with those
obtained at lesser elongations.

As above mentionned, we have assumed axially sym-
metric shapes all along the different studied paths.
This has been tested in one point belonging to the
ground state ascending valley by making a cut in the
〈Q̂22〉 direction. More precisely, slightly before (upon
deforming away from the ground state) the intersec-
tion point of the ground state ascending path and the
lowest descending valley (discussed in subsection III D

〈Q20〉=15 b

〈Q30〉(b3/2)
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FIG. 6: Sections in the 〈Q̂30〉 direction for four 〈Q̂20〉-values

around the octupole instability observed at 〈Q̂20〉 ≈ 21 b
along the ground state ascending valley.

below), that is at 〈Q̂20〉 = 26 b, we have checked that

our axial solution (〈Q̂22〉 = 0, thus γ = 0) is stable
against triaxial deformations (see Fig. 7). In terms
of the (β, γ) parameters, it corresponds to a section in
the γ direction from 0o to 4o at a fixed β-value, namely
β = 1.1.

C. Around the exit point

When approaching 〈Q̂20〉-values of the order of 40 b,
the symmetrical solution1 corresponding to the ground
state ascending valley becomes less and less stable
against deformations narrowing the neck region (〈Q̂N 〉
deformations). This can be seen in Fig. 8 where the
deformation energy has been plotted as a function of
the expectation value of the neck operator Q̂N for dif-

1 In what follows, “symmetrical” or “asymmetrical” will refer

to the left-right reflexion symmetry.
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FIG. 7: Section of the potential energy surface at 〈Q̂20〉 =

26 b in the 〈Q̂22〉 direction.

ferent fixed 〈Q̂20〉-values from 38 b to 50 b. These

sections of the potential energy surface in the 〈Q̂N 〉
direction have been obtained in the following way. At
a given 〈Q̂20〉-value, we have started from the 〈Q̂N 〉-
value (typically between 4 and 5) associated with the
solution in the so-called ground state ascending valley
(which has been found to be symmetrical, see Fig. 6).

Then, we have varied the constraint on 〈Q̂N 〉 for both
larger and smaller values so as to describe the corre-
sponding deformation energy curve. This leads to the
full lines in Fig. 8. It appears that the (symmetrical)
solution lying in the ground state ascending valley and
corresponding to the minimum around 〈Q̂N〉 = 5 of

the 〈Q̂N 〉-sections is stable for 〈Q̂20〉-values lower than
or equal to 44 b. This minimum becomes less and less
pronounced when increasing 〈Q̂20〉 and tends to disap-
pear around 44 b, where it ends up by exhibiting a very
shallow pattern, close to a mere “shoulder”. That is
precisely what characterizes an exit point, referred to
as the “symmetrical exit point” in the following since
the corresponding octupole moment is equal to zero.

At very low – close to zero – 〈Q̂N 〉-values, a second
minimum develops in the curves of Fig. 8 starting from
〈Q̂20〉 ≈ 39 b upon increasing the elongation. The cor-
responding solution is two-body shaped and slightly
asymmetric. At all elongations considered here it cor-
responds to the 39K+31P fragmentation. The set of
such minima at various elongations forms what is called
here the 39K+31P descending valley (dashed line of Fig.
3) and will be discussed in greater details in the sub-
section III D. One can also remark that the minima
associated with the one-body shaped solution (corre-
sponding to the ground state ascending valley) and the
above two-body shaped solution coexist for elongations
contained between 〈Q̂20〉 = 39 b and 〈Q̂20〉 = 44 b, and
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FIG. 8: Sections in the 〈Q̂N〉 direction at various 〈Q̂20〉-
values around the exit point.

that, for 〈Q̂20〉 = 42 b, they have approximately the
same energy.

In addition, as it can be seen, e.g., in Fig. 9 display-
ing the deformation energy as a function of the expec-
tation value of Q̂30 at two different fixed 〈Q̂20〉-values
– namely 40 b and 46 b – an asymmetrical solution has
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FIG. 9: Sections in the 〈Q̂30〉 direction at 〈Q̂20〉 = 40 b and

〈Q̂20〉 = 46 b .

also been found. Then we have made a cut in the 〈Q̂N 〉
direction at the same elongations as above mentionned
but starting from this asymmetrical solution. We have
thus obtained the dashed curves of Fig. 8. It is inter-
esting to notice that, whereas the symmetrical ground
state ascending valley ends around 〈Q̂20〉 = 44 b, the
asymmetrical solution remains stable against neck de-
formations up to 〈Q̂20〉 = 50 b at least, where the min-
imum is still rather well pronounced (being approxi-
mately 1 MeV deep).

All along the above-discussed sections of the energy
surface in the 〈Q̂N 〉 direction, it has been checked that
the (axial) octupole and hexadecapole moments corre-
sponding to the symmetrical solution (full lines) with

〈Q̂20〉 ranging from 38 b to 44 b vary smoothly with

〈Q̂N 〉 as can be seen in Fig. 10. It is remarkable that

〈Q̂40〉 turns out to vary almost linearly with 〈Q̂N 〉,
which shows that these deformation coordinates may
be considered as being redundant. As far as the asym-
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FIG. 10: Variation of the expectation values of the axial
octupole and hexadecapole moments along the sections in
the 〈Q̂N〉 direction at various 〈Q̂20〉-values around the exit

point. They are expressed in b3/2 and b2, respectively.

metrical solution is concerned (dashed lines), the ex-

pectation value of Q̂30 appears to remain constant and
equal to about 2 b3/2 for 〈Q̂N 〉-values around 5 (see

Fig. 10). Upon making a cut in the 〈Q̂30〉 direction at

〈Q̂N 〉 = 5 with 〈Q̂20〉 fixed to 46 b for example (see Fig.
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〈Q30〉(b3/2)

Edef(MeV)

〈Q20〉=46 b
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FIG. 11: Sections of the potentiel energy surface in the
〈Q̂30〉 direction at three different 〈Q̂N〉-values (3, 5 and 7)

and at the same elongation 〈Q̂20〉 = 46 b.

11), we have found indeed a minimum at a finite 〈Q̂30〉-
value of about 2 b3/2. As one goes away from this 〈Q̂N 〉
region one gets symmetrical equilibrium solutions (i.e.,
〈Q30〉 = 0), which is consistent with the existence of a
symmetrical minimum along the sections of Fig. 11 at
〈Q̂N 〉 = 3 as well as 〈Q̂N〉 = 7. In addition, one may
note the appearance of a second minimum at a finite
〈Q̂30〉-value of about 4.5 3/2 for the cut at 〈Q̂N 〉 = 3
(see Fig. 11). Even though, as already mentioned,

〈Q̂40〉 varies almost linearly with respect to 〈Q̂N 〉, it

exhibits, however, a kink around the 〈Q̂N 〉-value where

〈Q̂30〉 vanishes (see the right column of Fig. 10).

As an example, a sequence of nuclear shapes is dis-
played in Fig. 12 showing that, starting from the sym-
metrical minimum at 〈Q̂20〉 = 44 b – where 〈Q̂N 〉 = 4.4
– the nucleus smoothly acquires a left-right asymmetric
deformation yielding the mass asymmetric 39K + 31P
fragmentation.

Assuming that the 70Se nucleus adiabatically follows
the ascending valley from its ground state up to the
exit point, we can consider that the height of the lat-
ter relatively to the ground state provides an upper
limit of the conditional fission barrier height connect-
ing the ground state to the 39K + 31P exit channel.
Specifically, we have taken as a saddle point the local
maximum at 〈Q̂N 〉 ≈ 1.6 along the energy curve com-

puted at 〈Q̂20〉 = 44 b in Fig. 8. It lies 51.5 MeV
above the (oblate) ground state. The comparison with
experimental data will be presented in the last section
after having taken into account the rotational correc-
tion as well as the two-body contribution to the center
of mass correction.
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FIG. 12: Sequence of nuclear shapes along the section in
the 〈Q̂N〉 direction at 〈Q̂20〉 = 44 b starting from the sym-
metrical one-body solution.

D. Descending valleys

As discussed in the previous subsection (III C), a
two-body shaped solution corresponding to a 39K+31P
configuration is found at very low 〈Q̂N 〉-values (of the

order of 0.3) for 〈Q̂20〉 = 39 b and larger elongations.
We have determined the deformation energy curve as-
sociated with this fragmentation as a function of 〈Q̂20〉,
in particular the entry point in this valley, that is
the lowest 〈Q̂20〉-value at which this solution is stable

against 〈Q̂N 〉 deformations. We have thus obtained the
dashed curve displayed in Fig. 3 which is reported as a
full line in Fig. 13. Along these curves, the energy is a
decreasing function of 〈Q̂20〉. Asymptotically it should

behave like the mutual Coulomb energy E
(mut)
Coul . That

is why we have also plotted E
(mut)
Coul – within an approx-

imation discussed below – to which a constant energy
term has been added and fitted so that the so-obtained
total energy is as close as possible to the actual defor-
mation energy Edef . Since we are only interested, here,
in the behavior of Edef as a function of 〈Q̂20〉, we will
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FIG. 13: Deformation energy curve as a function of 〈Q̂20〉
corresponding to the 39K+31P fragmentation (full line).

The sum of the mutual Coulomb energy E
(mut)
Coul within the

approximation of two well separated spherical fragments
eq.(17) and a fitted constant (see the text) has been dis-
played as a dotted line.

not discuss the constant term. To calculate the mutual
Coulomb energy, we have taken stock on the fact that
the two fragments are well separated. Then the ex-
pectation value of the axial mass quadrupole moment
〈Q̂20〉 of the whole fissioning system is related to the
intrinsic elongation of the fragments defined with an
obvious notation by 〈Q̂20〉(i) (i = 1, 2), according to
the following expression:

〈Q̂20〉 = 〈Q̂20〉(1) + 〈Q̂20〉(2) + 2
A1 A2

A1 + A2
D2

cm , (15)

where Dcm is the center of mass distance. As can be
seen in Fig. 14, the fragment elongations are found to
be rapidly decreasing to almost vanishing values. Since
they are negligible with respect to D2

cm, we are thus left
with:

〈Q̂20〉 ≈ 2
A1 A2

A1 + A2
D2

cm . (16)

Consequently, for almost spherical fragments, the fol-
lowing expression holds for the mutual Coulomb energy
between both fragments:

E
(mut)
Coul ≈ Z1 Z2 e2

Dcm
≈

√

2 A1 A2

A1 + A2

Z1 Z2 e2

√

〈Q̂20〉
. (17)

This is the energy – to within a constant term – plot-
ted as a dotted line in Fig. 13. As expected, Edef

does behave like E
(mut)
Coul asymptotically and varies like

〈Q̂20〉−1/2. Nevertheless, as the elongation nears its

〈Q20〉 (b)

〈Q20〉
(heavy) (b)

〈Q20〉
(light) (b)

-0.05

0

0.05

0.1

0.15

40 50 60 70 80 90

FIG. 14: Expectation values of the mass quadrupole mo-
ments of the heavy fragment (dashed line) and the light

one (dotted line) expressed in barns as functions of 〈Q̂20〉
for the 39K+31P fragmentation.

value at the entry point of the descending 39K+31P
valley, the deformation energy curve slightly departs
from the pure Coulombian trend. The above approxi-
mation of well separated fragments becomes therefore
less and less valid. Indeed at this elongation, the “tip
distance” – measuring the closest distance between the
fragments edges, defined at half the saturation density
– amounts to 3 fm approximately, so that the nuclear
interaction between nucleons in different fragments be-
gins to play a role.

Let us now focus our interest on another character-
istic feature of the 39K+31P fragmentation. The heavy
fragment (chosen to be the left one since we consider

positive 〈Q̂30〉-values) turns out to have a magic neu-
tron number N = 20 and an almost magic proton num-
ber Z = 19 ≈ 20, making it very close to the doubly
magic 40Ca nucleus. Thus this mass division is clearly
driven by shell effects in the heavy fragment. This
explains why the fragments are almost spherical (see
Fig. 14). We can therefore expect that other fragmen-
tations should be favored by the shell effects in at least
one fragment, which should lead to local minima in a
section of the potential energy surface, for example,
in the 〈Aright〉 direction (i.e., the expectation value of
the nucleon number in the right fragment). That is
precisely what we have done upon imposing the elon-
gation at 〈Q̂20〉 = 45 b for instance. We have then
obtained the curve displayed in Fig. 15. Four local
minima have been found for the mass of the light frag-
ment, corresponding to different mass divisions of the
70Se nucleus, namely:

• 〈Alight〉 = 12 : 58Ni+12C fragmentation;
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FIG. 15: Section of the potential energy surface at 〈Q̂20〉 =
45 b along the 〈Aright〉 direction.

• 〈Alight〉 = 16 : 54Fe+16O fragmentation (the cor-
responding local minimum appears merely as a
shoulder at the energy scale of Fig. 15);

• 〈Alight〉 = 31 : 39K+31P fragmentation (see the
preceding discussion);

• 〈Alight〉 = 35 : 35Cl+35Cl fragmentation (sym-
metric fission, associated with a rather shallow
minimum).

The three first above-mentioned divisions are clearly
driven by shell effects in one of the two fragments. In
the first two cases one fragment is indeed doubly magic
or very close to a doubly magic nucleus:

• the 58Ni heavy fragment has a magic proton num-
ber Z = 28 and almost a magic neutron number
N = 30 ≈ 28;

• the 16O light fragment is doubly magic whereas
the heavy one (54Fe) has a magic neutron number
N = 28;

The case of the 39K + 31P fragmentation has been
already discussed. It is interesting to bear in
mind that the product of the two fragments charges
〈Zlight〉〈Zheavy〉, driving the Coulomb energy scale, de-
creases whith the mass asymmetry. This can explain
the increasing energy of the four above mentioned frag-
mentions going from 〈Alight〉 = 12 to 〈Alight〉 = 35 at

the same 〈Q̂20〉-value. It is, indeed, related to the fact
that, as already noted, the 70Se has a x = 0.33 fis-
sility parameter. It lies therefore slightly below the
usually considered Businaro–Gallone point (x ≈ 0.35).
In this mass region, the liquid drop (non quantum) ef-
fects dominate with respect to the shell effects whereas
one observes the contrary in the actinides and beyond.

We have studied in particular the energy of the
58Ni+12C solution as a function of the elongation

-572

-570

-568

-566

-564

-562

-560

20 30 40 50 60 70 80

10 12 14 16 18 20

-554

-552

-550

-548

-546

-544

-542

20 30 40 50 60 70 80

〈Q20〉 (b)

Dcm(fm)

Edef (MeV)
Ecoul

(mut)+const (MeV)

58Ni+12C

〈Q20〉 (b)

no c.m. correction

58Ni+12C

Dcm(fm)

10 12 14 16 18 20

FIG. 16: Deformation energy curve as a function of 〈Q̂20〉
corresponding to the 58Ni+12C fragmentation with (upper
panel) and without (lower panel) center of mass correction.
The sum of the mutual Coulomb energy in the approxi-
mation of two well separated spherical fragments Eq. (17)
and a fitted constant (see the text for explanation) has been
displayed as a dashed line in both cases.

〈Q̂20〉. The corresponding deformation energy curve
has been displayed as a dotted line in Fig. 3 and as a
full line in the upper panel of Fig. 16. As can be no-
ticed this curve does not follow the expected Coulom-
bian trend – whatever the value of the constant term
added to E

(mut)
Coul . However, when performing the same

calculations without any center of mass correction, one
obtains the dotted curve in the lower panel of Fig. 16
and a better agreement is found for the lower 〈Q̂20〉-
values. For larger elongations, the discrepancy between
the deformation energy and the Coulombian trend in-
creases with 〈Q̂20〉.

These two facts might be explained as such. Upon
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increasing the global elongation and keeping the same
number of basis states, one makes the (one center) har-
monic oscillator basis less and less suited for the de-
scription of two well separated nuclei. This is seen, for
instance, on the larger deformation part of the Edef

curve in Fig. 16, showing thus a bigger and bigger lack
of binding from the expected behaviour as the deforma-
tion increases. On the other hand, even at the lowest
deformations considered in this descending valley, the
center of mass correction, tailored for the compound
70Se nucleus, has a priori no reasons to be suited to
the description of two separated lighter nuclei. This
is demonstrated in the lower part of Fig. 16 where a
self-consistent model calculation without any center of
mass corrections restores the expected 1/r behaviour of
the deformation energy curve before being polluted by
the above-mentioned single well basis problem. Since
the center of mass correction scales as 1/A, it is not
surprising to find that this effect is more apparent in
the 58Ni+12C case (Fig. 16) than in the 39K+31P case
(Fig. 13). Indeed in the former case a very light nu-
cleus (12C) is involved.

In the subsection III C we have investigated the re-
gion of the so-called exit point to define a continu-
ous path from the ground state ascending valley to the
39K + 31P descending valley. In order to find an up-
per limit of the conditional fission barrier height as-
sociated with the 58Ni+12C fragmentation, we have
also sought here such a continuous path. For the pur-
pose of this study, we have chosen to make a section
in the potential energy surface in the 〈Q̂30〉 direction,
at the elongation for which the solutions belonging to
the ascending and descending valleys have equal en-
ergies, namely at 〈Q̂20〉 = 26.5 b. We have then ob-
tained the deformation energy curve plotted in Fig.
17. As can be seen in Fig. 18, the expectation val-
ues of the axial hexadecapole moment 〈Q̂40〉 and of

the neck operator 〈Q̂N〉 vary continuously as functions

of 〈Q̂30〉, 〈Q̂N 〉 experiencing however a rapid decrease

around 〈Q̂30〉 = 4 b3/2 corresponding to the neck rup-
ture. Thus, the difference between the maximal value
of the energy for 〈Q̂30〉 = 5 b3/2 (see Fig. 17) along
this path and the (oblate) ground state energy gives an
upper limit for the conditional barrier height between
the ground state and the 58Ni+12C exit channel. It
amounts to about 40.9 MeV (before corrections dis-
cussed in the next section).

IV. ROTATIONAL AND CENTER OF MASS

CORRECTIONS, CONDITIONAL BARRIERS

Let us discuss now the approximations made to re-
store the rotational and translational symmetries bro-
ken by our mean field microscopic approach.

As in Ref. [1] the rotation symmetry has been ap-
proximately restored in the energy calculation upon ap-

〈Q30〉(b3/2)

Edef(MeV)

〈Q20〉=26.5 b

58Ni+12Csym. 70Se
-564

-562

-560

-558

-556

-554

0 2 4 6 8 10

FIG. 17: Section of the potential energy surface at 〈Q̂20〉 =

26.5 b along the 〈Q̂30〉 direction.

〈Q30〉(b3/2)

〈Q40〉(b2)

〈QN〉
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FIG. 18: Variation of 〈Q̂40〉 (full line) and 〈Q̂N〉 (dashed
line) along the section of the potential energy surface in the

〈Q̂30〉 direction displayed in Fig. 17.

plying a correction δ Erot = 〈J2〉/2 I. There the expec-
tation value of the total angular momentum squared
(including the one-body and two-body parts) has been
computed for the relevant BCS solution. Correspond-
ingly the moment of inertia I has been evaluated for
the same wave-function within the Inglis–Belyaev [17]
approximation corrected as in [1] for the self-consistent
Thouless–Valatin terms [18]. The effect of such a rota-
tional symmetry restoration on the conditional fission
barrier height Bf (58Ni) separating the ground state
from the 58Ni+12C final state is given by the difference
between the values of the correction energy δ Erot cal-
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culated for the maximum along the continuous section
of Fig. 17 (〈Q̂20〉 = 26.5 b), and the (oblate) ground

state (〈Q̂20〉 = −2 b). We have then found, respec-
tively, 6.5 and 2.7 MeV. As noted previously [1] this

corrective energy is increasing with 〈Q̂20〉. From the
above values one infers that our corresponding fission
barrier may be considered as being overestimated by
about 3.8 MeV. As far as the barrier height Bf (39K)
separating the ground state from the 39K+31P exit
channel is concerned, the effect of the rotational correc-
tion is calculated by the difference of the corresponding
δ Erot energies at the exit point, where we have ob-
tained δ Erot = 6.8 MeV, and at the ground state. The
corresponding fission barrier is thus lowered by about
4.1 MeV.

The second correction is related to the breaking of
the center of mass translational invariance. This has
been taken care of as in [1] by correcting its kinetic
part, in the variational energy, through a mere sub-
straction of the one-body part of the center of mass
kinetic energy. As thoroughly analyzed in Ref. [19]
such an approximation is not free from some ambigui-
ties:

• arbitrariness of throwing away a part of the en-
ergy which has to be considered (which, as it
appears, partly cancel the one which is retained
here)

• source of a systematic error due to a possibly dif-
ferent deformation dependence of the one-body
and two-body parts of the energy

• further ambiguities in deciding whether some or
all of the ρ̂-dependence of the 〈P2〉/2 m A en-
ergy should or should not be considered in the
functional derivatives yielding the Hartree–Fock
equations [19].

Here, we have limited ourselves to the self-consistent
one-body part of the center of mass correction energy.
This was motivated, beyond the numerical simplicity
arguments, by the fact that the SkM* force parame-
ters have been fitted within this framework. However
we have performed some perturbative calculations to
yield a qualitative hint of what could be the effect
of such a crude approximation on the fission barrier
heights. Since the traditional way to treat the cen-
ter of mass correction breaks down when dealing with
two well separated fragments (as above discussed at
length in the 58Ni+12C case), we have restricted our-
selves to one-cluster shapes, that is close to the ground
state ascending valley. The top of the two considered
mass-asymmetric fission barriers corresponds to such
a shape, before the neck rupture (corresponding to a

value of 〈Q̂N 〉 of about 2 for the upper descending val-
ley and about 3 for the lower one). We can thus have a
reasonable confidence in the above-mentioned pertur-
bative calculations of the two-body contribution to the

center of mass correction around the exit point and the
saddle point of the 58Ni+12C exit channel. As can be

GS ascending valley

〈Q20〉(b)

Ecm2(MeV)
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FIG. 19: Two-body contribution to the center of mass ki-
netic energy along the ground state ascending valley.

seen in Fig. 19 showing the variation of the two-body
part Ecm2 of the center of mass kinetic energy as a func-
tion of 〈Q̂20〉 along the ascending valley, Ecm2 slightly
increases along this valley. It is found to decrease the
height of the exit point relatively to the ground state by
about 2.7 MeV and to lower the saddle point along the
path down to the 58Ni+12C exit channel by 2.4 MeV.

As a result, taking the rotational and two-body
center of mass corrections into account, the conditional
fission barrier heights which we finally obtain amount
to Bf (58Ni) = 34.7 MeV and Bf (39K) = 44.9 MeV.

These values can now be compared with the available
experimental data, obtained by T. S. Fan and collabo-
rators [5]. More precisely we have considered the mass-
asymmetric fission barriers BZ extracted from “indi-
vidual” fittings of the excitation functions with a tran-
sition state formalism and appearing in Tab.4 of Ref.
[5]. Our fission barrier height for the 58Ni+12C exit
channel should be compared with B6 = 25.28 MeV,
whose overall uncertainty is estimated to amount to
3%, that is 0.8 MeV. Our Bf (58Ni)-value overestimates
therefore the experimental value by about 9.4 MeV.
In the case of the 39K+31P fragmentation, the exper-
imental value B15 = 35.09 MeV – with the same rel-
ative uncertainty – is about 9.8 MeV lower than our
Bf (39K)-value. Some other conditional barriers have
also been deduced in Ref. [5] as resulting from a global
fit (i.e., a fit involving most of the studied fragmenta-
tions). These global values turn out to be very close
to those given by the individual fitting procedure, but
since they were not reported in the 58Ni+12C case, we
have not considered them here.



13

The discrepancies between our barrier values and the
data correspond roughly to an overestimation of about
1/3. It is however interesting to note that the differ-
ence between B15 and B6, namely B15−B6 = 9.8 MeV,
is quite well reproduced since our calculations give
correspondingly Bf (39K) − Bf (58Ni) = 10.2 MeV.
Furthermore, to put the above-mentioned overestima-
tion in the proper perspective, one should first bear in
mind that we have only given here upper limits for the
fission barrier heights. It is also worth to recall that
it was before this work commonly thought that our
results should vastly overestimate the experimental
barrier heights on the basis of a semi-classical estimate
of the curvature liquid drop energy based on the lepto-
dermous approximation for the density [4]. It is hard
to disentangle, in such an appraisal, the deficiencies
of the effective force parametrizations and the limits
of the density modelization. Our results might rather
indicate that the leptodermous approximation could
be not really adapted for nuclei as light as 70Se. An
additional reason for this might be, as we have seen,
that the scission points for such a light compound
nucleus are very close to the saddle points. Indeed,
one deals here with fission barriers corresponding to
somewhat well marked neck formations, which are
clearly not expected to be well represented within the
leptodermous expansion.

To close this section, it is worth mentioning the
theoretical work of two groups of authors, namely G.
Royer and K. Zbiri using the Generalized Liquid Drop
Model on the one hand [6], P. Möller, A. J. Sierk and
A. Iwamoto using the macroscopic-microscopic model
on the other hand [7]. These authors have reported
calculations of conditional macroscopic fission barrier
heights of 70Se (only in the symmetric case for the sec-
ond group). In both approaches the microscopic cor-
rection (including shell and pairing effects) remain of
course to be properly added. In order to compare their
experimental BZ-values with the two above sets of cal-
culated barrier heights, the authors of Ref. [5] have
therefore substracted to BZ the microscopic correction
calculated in the ground state of 70Se by Möller et al.

[20]. The resulting values (quoted as “exp.”) are dis-
played in Tab.I together with the barrier heights cal-
culated by Royer et al. and Möller et al. In principle,
the macroscopic fission barrier height B macro

Z should
be calculated by substracting the microscopic correc-
tion at the saddle point on the fission path leading to
a given Z-value for the charge of the light fragment.
The macroscopic barrier height B macro

Z indeed writes,
in the notations of Ref. [20]:

B macro
Z = BZ + E

(GS)
s+p − E

(sadd.Z)
s+p (18)

where E
(ε)
s+p is the shell-plus-pairing correction evalu-

ated for the microscopic solution corresponding to the

TABLE I: Conditional macroscopic fission barriers for the
70Se nucleus extracted from experimental data [5] (after
correction for microscopic effects) and calculated within two
different approaches by Royer et al. [6] and Möller et al.

[7].

Zlight exp. Royer et al. Möller et al.

6 29.5 34.5 –

15 39.3 40.5 –

17 39.4 40.6 37.6

deformation noted here generically by ε. In the ex-

perimental reference [5] the energy E
(sadd.Z)
s+p has been

neglected. This produces a systematic error in the re-
sulting B macro

Z -values. In the absence of any definite
calculations of these shell and pairing effects in the
macroscopic-microscopic approach of Refs. [6, 7] at the
saddle points, we can at best formulate the conjecture
that the systematic error of the so-called “experimental
values” is of the order of a couple of MeV.

V. CONCLUSIONS AND PERSPECTIVES

Conditional fission barrier heights of the 70Se nu-
cleus, which lies below the Businaro–Gallone point,
have been calculated in the microscopic Hartree–Fock–
BCS approach (using the SkM* parametrization of the
Skyrme effective force and a seniority force for the pair-
ing residual interaction) in the cases of two asymmet-
ric divisions: 58Ni+12C and 39K+31P. They have ap-
peared to be locally stable due to shell effects in at
least one of the fragments. The obtained fission barri-
ers overestimate the available data by about 10 MeV.
This result however may be deemed as an encouraging
one in two accounts. Indeed the barrier heights were
expected much higher since some studies based on ap-
proximations of mean field semi-classical approaches –
including some using the SkM* Skyrme force – have
lead to a much too high curvature-energy value ac as
compared to the value obtained from fits of experi-
mental fission barrier heights and ground state masses.
Moreover, one should remind that our calculated bar-
rier heights are upper limits since the whole deforma-
tion space has not been systematically explored. In
this respect, the present study has also underlined the
complexity of the potential energy surface of light nu-
clei, due to the proximity of the scission point from
the saddle point, contrarily to the situation prevailing
in actinide or heavier nuclei. A more appropriate de-
scription of this surface implies a global scanning of the
deformation space built up with a relevant number of
well chosen deformation coordinates. The correct lo-
calization of physical saddle points can then be done,
e.g., by implementing a water immersion method as
the one used in five dimensions by P. Möller (see for
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example Ref. [7] for a description of the method and
Refs. [12-14] quoted therein) and recently extended to
surfaces of any dimension by one of the author (L. B.)
in collaboration with P. Möller.
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